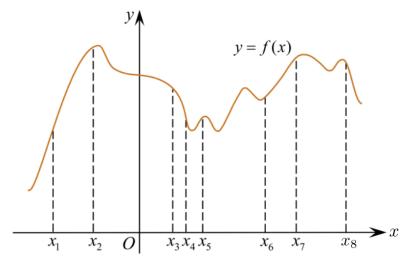
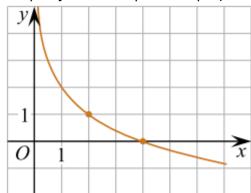

Недельный вариант ЕГЭ по математике № 3


1. В треугольнике ABC угол C равен 90° , AB=45, $\sin\alpha=0.6$. Найдите BC.


- 2. Даны векторы $\vec{a}(25;0)$, $\vec{d}(1;-5)$. Найдите длину вектора $\vec{a}-4\vec{d}$.
- 3. Найдите объем многогранника, вершинами которого являются точки A,A_1,B_1,D_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, у которого $AB=5,AD=10,AA_1=9.$

- 4. При производстве в среднем на каждые 2982 исправных насоса приходится 18 неисправных. Найдите вероятность того, что случайно выбранный насос окажется неисправным.
- 5. Стрелок стреляет по одному разу в каждую из четырёх мишеней. Вероятность попадания в мишень при каждом отдельном выстреле равна 0, 6. Найдите вероятность того, что стрелок попадёт в две первые мишени и не попадёт в две последние.
- 6. Найдите корень уравнения $\sqrt{57-7x}=6$
- 7. Найдите значение выражения $\frac{4^{5,1}}{8^{2,4}}$
- 8. На рисунке изображён график функции y=f(x) и восемь точек на оси абсцисс: x_1,x_2,x_3,\ldots,x_8 . В скольких из этих точек производная функции f(x) положительна?

- 9. Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковые импульсы частотой $447~{\rm M}$ Гц. Скорость погружения батискафа вычисляется по формуле $v=c\frac{f-f_0}{f+f_0}$ где $c=1500~{\rm m/c}$ скорость звука в воде, f_0 частота испускаемых импульсов, f частота отражённого от дна сигнала, регистрируемая приёмником (в МГц). Определите частоту отражённого сигнала в МГц, если скорость погружения батискафа равна $10~{\rm m/c}$.
- 10. Первый час автомобиль ехал со скоростью $115 \, \rm km/ч$, следующие три часа со скоростью $45 \, \rm km/ч$, а затем два часа со скоростью $40 \, \rm km/ч$. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в $\rm km/ч$.
- 11. На рисунке изображён график функции $f(x) = b + \log_a x$. Найдите f(32).

- 12. Найдите точку максимума функции $y=-rac{x^2+289}{x}.$
- 13. a) Решите уравнение $\log_2(x^2 + 2x) = 3$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $[\log_3 0,1;\log_3 13]$
- 14. Дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$, O центр грани $A_1B_1C_1D_1$. Плоскости (AOB) и (BOC) прямоугольники, и стороны AB и CD являются их меньшими сторонами. AB и BC в 2 раза меньше соответственных больших сторон сечений.
 - а) Докажите, что ABCD квадрат.
 - б) Найдите угол между CA_1 и (BOC).
- 15. Решите неравенство

$$\frac{117 - 15 \cdot 3^x}{9^x - 36 \cdot 3^x + 243} \geqslant 0.5$$

- 16. Зависимость количества Q (в шт., $0 \leqslant Q \leqslant 20000$) купленного у фирмы товара от цены P (в руб. за шт.) выражается формулой Q = 20000 P. Затраты на производство Q единиц товара составляют 6000Q + 4000000 рублей. Кроме затрат на производство, фирма должна платить налог t рублей (0 < t < 10000) с каждой произведённой единицы товара. Таким образом, прибыль фирмы составляет PQ 6000Q 4000000 tQ рублей, а общая сумма налогов, собранных государством, равна tQ рублей. Фирма производит такое количество товара, при котором её прибыль максимальна. При каком значении t общая сумма налогов, собранных государством, будет максимальной?
- 17. Дан ромб ABCD. На диагонали AC отмечены точки M и N, так что AM=NM=NC. Прямая BM пересекает сторону AD в точке P, а прямая BN пересекает сторону CD в точке Q.
 - а) Докажите, что площадь четырехугольника BPDQ равна площади треугольника ADC.
 - б) Найдите BD, если известно, что и около пятиугольника PMNQD можно описать окружность.
- 18. Найдите все значения a, при каждом из которых система уравнений

$$\left\{ egin{aligned} rac{(y^2 - xy + 3x - y - 6)\sqrt{x + 2}}{\sqrt{6 - x}} = 0, \ x + y - a = 0. \end{aligned}
ight.$$

имеет ровно два различных решения.

- 19. На доске написано 24 числа: восемь «5», восемь «4» и восемь «3». Эти числа разбивают на две группы, в каждой из которых есть хотя бы одно число. Среднее арифметическое чисел в первой группе равно A, среднее арифметическое чисел во второй группе равно B. (Для группы из единственного числа среднее арифметическое равно этому числу.)
 - а) Приведите пример разбиения исходных чисел на две группы, при котором среднее арифметическое всех чисел меньше $\frac{A+B}{2}$.
 - б) Докажите, что если разбить исходные числа на две группы по 12 чисел, то среднее арифметическое всех чисел будет равно $\frac{A+B}{2}$.
 - в) Найдите наибольшее возможное значение выражения $\frac{A+B}{2}$.